Ashford Park Primary School

Inspiring a love for lifelong learning

Calculation Policy

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary.

At Ashford Park we are using the 'White Rose Scheme' as a basis for our planning.
We are using the White Rose Hub philosophy of:

- fluency - using Learning Objectives from the National Curriculum
- reasoning
- problem-solving

In all our maths learning we are using a CPA approach within our maths lessons (CPA - Concrete/ Pictorial/ Abstract)
We are using resources such as - White Rose, Third Space Learning, NCETM Mastery documents \& nrich problems.

The aim is that when children leave Ashford Park they:

- Have a secure knowledge of number facts and a good understanding of the four calculation operations (addition, subtraction, multiplication and division)
- Make use of jottings, diagrams and informal notes to help record their thinking when using mental methods that generate more information than can be kept in their heads
- Have an efficient, reliable, written method of calculation for each operation that they are able to apply with confidence when they are unable to perform a calculation mentally

Progression in Calculations

Addition Key language that should be used: sum, total, parts and wholes, plus, add, altogether, more than, increase, 'is equal to' is the same as'

Objective \& Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \\ & \begin{array}{l} \text { Use the part-part whole } \\ \text { diagram as shown above } \\ \text { to move into the } \\ \text { abstract. } \end{array} \\ & \hline \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10 .	$7+4=11$ If I am at seven, how many more do I need to make 10? How many more do I add on now?

Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column addition with no regrouping Add two or three 2or 3-digit numbers	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. Add together the ones first then the tens. Move to using place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.

Subtraction Key language that should be used: take away, less than, the difference, subtract, minus, fewer, decrease, 7 take away 3 , the difference is four'

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. 000 $6-2=4$ $4-2=2$	$15-3=12$ Cross out drawn objects to show what has been taken away.	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
Counting back	Move objects away from the group, counting backwards. 13-4 Make the larger number in your subtraction. Move the beads along the bead string as you count backwards in ones.	Count back on a number line or number track. Start at the bigger number and count back the smaller number showing the jumps on the number line. $57-23=34$ This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at?

Find the difference	Compare amounts and objects to find the difference. 7 'Seven is 3 more than four' Use cubes to build towers or make bars to find the difference. Use basic bar models with objects to find the difference.	Count on using a number line to find the difference. Comparison Bar Models Draw bars to Lisa is 13 years old. Her sister is 22 years old. find Find the difference in age between them. the difference between 2 numbers.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches. Tom has 12 sweets and his sister has 5 sweets. How many more does Tom have than his sister?
Represent and use number bonds and related subtraction facts within 20. Part Part Whole Model	Link to addition. Use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=4$	Use a pictorial representations of objects to show the part part whole model.	Move to using numbers within the part whole model.

Make 10	$14-9=$ Make 14 on the ten frame. Take 4 away to make 10, then take one more away so that you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach 10 ? How many do we have left to take off?
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use the bead bar or bead string to model counting to next ten and the rest.	 Use a number line to count on to the next 10 and then the rest.	$93-76=17$
Column subtraction without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to a clear understanding of the written column subtraction.

	 Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		This will lead to an understanding of subtracting any number including decimals. Use zeros for place holders.

Multiplication Key language that should be used: double, times, multiplied by, the product of, groups of, lots of, 'is equal to' is the same as'

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling. \& \begin{tabular}{l}
Draw pictures to show how to double a number.

Double 4 is 8

\square
\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& | |
| :--- |
| |
| Children make representations to show counting in multiples. | \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$ |

\hline
\end{tabular}

Repeated addition	Use different objects to add equal groups.	Use pictorial representations including number lines to solve problems. There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Multiplication is commutative Arrays	Create arrays using counters, cubes and Numicon to show multiplication sentences. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of multiplication does not affect the answer.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Grid Method

Y3
Multiplying a 2-digit number by a 1-digit number using the grid method.

Y4
Multiplying a 3-digit number by a 1-digit number using the grid method.

Show the link with arrays to first introduce the grid method.

4 rows
of 10
4 rows of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

$\frac{\text { Calculations }}{4 \times 126}$
x 126

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Then you have your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Bar models are used to explore missing numbers.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$\mathbf{2 1 0}+\mathbf{3 5}=\mathbf{2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

10	8
10	100
30	
	30

X	1000	$\mathbf{3 0 0}$	$\mathbf{4 0}$	2
$\mathbf{1 0}$	10000	3000	400	20
8	8000	2400	320	16

			$\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \\ \hline \end{array}$

Division Key language that should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$	Use a number lines for grouping. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array. Think about the number sentences that can be created. $\text { Eg } \quad \begin{aligned} & 15 \div 3=55 \times 3=15 \\ & 15 \div 5=3 \quad 3 \times 5=15 \end{aligned}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

| Division with |
| :--- | :--- |
| remainders | | $14 \div 3=$ |
| :--- |
| Divide objects between groups and see |
| how much is left over. |

Long Division Y6 Divide numbers up to 4digits by a 2-digit whole number using the formal written method of long division.	$2544 \div 12$ How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds. How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2. Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2	Children to represent the counters, pictorially and record the subtractions beneath.I	Step one- exchange 2 thousand for 20 hundreds so we now have 25 hundreds.

